Sabtu, 31 Januari 2009

Salmonella Peanut Recalls: Expect More

Many people who have undergone surgical weight loss supplement their diets with protein shakes and bars. We could be affected by the salmonella recall for peanut butter products. Read what WebMD is reporting about this health scare:Salmonella Peanut Recalls: Expect MoreNo End in Sight to Peanut Product Recalls Spurred by Salmonella Outbreak; Criminal Probe Under WayBy Miranda HittiWebMD Health

5 Reasons to Walk

Hello Neighbors! Happy weekend to you.I just picked up the Reader's Digest special publication "Walk It Off" Winter 2009 edition. Of all the exercises I do I love walking the most. Outdoor walking in good weather is powerfully invigorating. And for those cloudy days breaking a good sweat on the treadmill is equally uplifting. "Walk it Off" offers "5 Great Reasons to Walk" on page 3:1) You'll

Kamis, 29 Januari 2009

Seafood and Vitamin K2

In his travels around the globe, Dr. Weston Price found that the most robust groups were often those who had access to marine and freshwater foods. For example, Polynesian groups had a tooth decay prevalence as low as 0.6% of teeth. That's roughly one in 5 people with even a single cavity, in a population that doesn't brush its teeth, drink fluoridated water or go to the dentist. These individuals had broad dental arches, straight teeth, and fully erupted wisdom teeth as well.

As soon as they adopted white flour and sugar as dietary staples, the tooth decay prevalence of Polynesian groups went as high as 33.4% of teeth, or about 11 cavities per person. This represents a 5,600% increase in the prevalence of tooth decay. The next generation to be born also suffered from characteristic facial and skeletal abnormalities that are common in modern societies to varying degrees.

This leads me to ask the question, what is unique about seafood that allows it to support excellent development and maintenance of the human body? Seafood has a lot of advantages. It tends to be very rich in minerals, particularly iodine which can be lacking in land foods. It's also a good source of omega-3 fatty acids and low but adequate in linoleic acid (omega-6). This impacts development and maintenance in a number of ways, from fat mass to dental health.

As I wrote in the last post and others, I believe that one of the major determinants of proper development and continued health is the diet's content of the fat-soluble vitamins A, D and K2. K2 in particular is rare in the modern diet. We're also deficient in vitamin D because of our indoor lifestyles and use of sunscreen. Polynesians didn't have to worry about vitamin D because they spent much of the day outside half naked.

How about K2? Is seafood a good source? At first glance, it doesn't appear to be. Mackerel is the best source I came across on NutritionData, with one serving delivering 5.6 micrograms of vitamin K. It wasn't specified, but only a portion of that will be vitamin K2 MK-4, with the majority probably coming from K1. Most other types of fish have very low levels of vitamin K.

But we have to probe deeper. Nutrition information for fish refers to muscle tissue. Muscle is a poor source of K2 in mammals, could that be the case in fish as well? It turns out, the organs are the best source of K2 MK-4 in fish, just as they are in mammals. It's most concentrated in the liver, kidneys, heart and gonads. This loosely resembles the situation in mammals, which also retain MK-4 in their kidneys and gonads (along with pancreas, salivary glands, and brain).

I don't know how frequently traditional non-industrial cultures ate fish organs. My guess is they discarded most of them as do modern cultures, because they smell funny and putrefy rapidly. There are some exceptions, however. Certain traditional cultures ate fish livers, cod for example. Price described a dish eaten by a healthy, isolated Gaelic group in Nutrition and Physical Degeneration:
An important and highly relished article of diet has been baked cod's head stuffed with chopped cod's liver and oatmeal.
Gonads are one of the richest sources of K2 MK-4 in fish, containing 5-10 micrograms of MK-4 per kilogram of tissue in a few different species (according to this paper). Even that is not really an impressive concentration.

One thing that is universally relished by traditional groups is fish eggs, which of course develop from the gonads. A number of cultures dried fish eggs, sometimes trading them far into the interior. Although they haven't been analyzed for MK-4 content in modern times, Price found fish eggs to be a rich source of K2. Speaking of vitamin K2, he said: "its presence is demonstrated readily in the butterfat of milk of mammals, the eggs of fishes and the organs and fats of animals". Unfortunately, Price's assay was not quantitative so we don't have numbers.

As mainstream medicine slowly catches up to the importance of vitamin K2 MK-4 that Price described in the 1940s, more foods are being tested. I think we'll see values for fish eggs in the near future. This will allow us to discriminate between two possibilities: 1) seafood is a good source of K2, or 2) the human requirement for K2 is not particularly high in the context of an otherwise healthy diet.

Seafood and Vitamin K2

In his travels around the globe, Dr. Weston Price found that the most robust groups were often those who had access to marine and freshwater foods. For example, Polynesian groups had a tooth decay prevalence as low as 0.6% of teeth. That's roughly one in 5 people with even a single cavity, in a population that doesn't brush its teeth, drink fluoridated water or go to the dentist. These individuals had broad dental arches, straight teeth, and fully erupted wisdom teeth as well.

As soon as they adopted white flour and sugar as dietary staples, the tooth decay prevalence of Polynesian groups went as high as 33.4% of teeth, or about 11 cavities per person. This represents a 5,600% increase in the prevalence of tooth decay. The next generation to be born also suffered from characteristic facial and skeletal abnormalities that are common in modern societies to varying degrees.

This leads me to ask the question, what is unique about seafood that allows it to support excellent development and maintenance of the human body? Seafood has a lot of advantages. It tends to be very rich in minerals, particularly iodine which can be lacking in land foods. It's also a good source of omega-3 fatty acids and low but adequate in linoleic acid (omega-6). This impacts development and maintenance in a number of ways, from fat mass to dental health.

As I wrote in the last post and others, I believe that one of the major determinants of proper development and continued health is the diet's content of the fat-soluble vitamins A, D and K2. K2 in particular is rare in the modern diet. We're also deficient in vitamin D because of our indoor lifestyles and use of sunscreen. Polynesians didn't have to worry about vitamin D because they spent much of the day outside half naked.

How about K2? Is seafood a good source? At first glance, it doesn't appear to be. Mackerel is the best source I came across on NutritionData, with one serving delivering 5.6 micrograms of vitamin K. It wasn't specified, but only a portion of that will be vitamin K2 MK-4, with the majority probably coming from K1. Most other types of fish have very low levels of vitamin K.

But we have to probe deeper. Nutrition information for fish refers to muscle tissue. Muscle is a poor source of K2 in mammals, could that be the case in fish as well? It turns out, the organs are the best source of K2 MK-4 in fish, just as they are in mammals. It's most concentrated in the liver, kidneys, heart and gonads. This loosely resembles the situation in mammals, which also retain MK-4 in their kidneys and gonads (along with pancreas, salivary glands, and brain).

I don't know how frequently traditional non-industrial cultures ate fish organs. My guess is they discarded most of them as do modern cultures, because they smell funny and putrefy rapidly. There are some exceptions, however. Certain traditional cultures ate fish livers, cod for example. Price described a dish eaten by a healthy, isolated Gaelic group in Nutrition and Physical Degeneration:
An important and highly relished article of diet has been baked cod's head stuffed with chopped cod's liver and oatmeal.
Gonads are one of the richest sources of K2 MK-4 in fish, containing 5-10 micrograms of MK-4 per kilogram of tissue in a few different species (according to this paper). Even that is not really an impressive concentration.

One thing that is universally relished by traditional groups is fish eggs, which of course develop from the gonads. A number of cultures dried fish eggs, sometimes trading them far into the interior. Although they haven't been analyzed for MK-4 content in modern times, Price found fish eggs to be a rich source of K2. Speaking of vitamin K2, he said: "its presence is demonstrated readily in the butterfat of milk of mammals, the eggs of fishes and the organs and fats of animals". Unfortunately, Price's assay was not quantitative so we don't have numbers.

As mainstream medicine slowly catches up to the importance of vitamin K2 MK-4 that Price described in the 1940s, more foods are being tested. I think we'll see values for fish eggs in the near future. This will allow us to discriminate between two possibilities: 1) seafood is a good source of K2, or 2) the human requirement for K2 is not particularly high in the context of an otherwise healthy diet.

A Better Buffalo Chicken "Wing"

Well, it's just around the corner: another great American feasting day. The Superbowl. I know our house will be full of oh-so-delicious-not-so-nutritious offerings just tempting me on game day. And while I'm not about to say NO to a few of my favorite things, I'm not against making some traditional favorites a little bit more WLS-friendly. This is one of my favorite recipe do-overs: The classic

Headachesorethroatcoldbleurgh!

Feeling rubbish. Sore throat, headache, full on snot - that kind of rubbish.

Band been behaving itself, but can still eat a lot. I am having to chew more for sure, but there is still not enough restriction. It's like its on the verge of something. Its so close, but not quite there. So I am going again on Sunday and should be able to sort it out. Wow, how many times do I say that? Well lets just hope this REALLY is the time now.

Went out to dinner last night with my mate Rhuta. She has just got engaged to her long term boyfriend and is so happy, so we went out to have a good chat over a meal. We had Moroccan
with a Mixed Meze to share for starter (stuffed vine leaves, couscous, spicy beans, cucumbery-yoghurt thing, sea food mix and humous) and then I had some lentil/pea pattys like burgers that are cooked on a wood burning grill with tabbouleh (Bulgar wheat and herbs and onions etc) and a tomato and pepper sauce. It was yummy. Was going to have pudding too - baklava or however you spell it but it was a bit grim. I know that it is actually the real thing and there was nothing wrong with it, but in my mind a weird bland nut puree in pastry covered with oil and honey is not a good pudding... maybe I'm weird, but this is just boring, and not worth it. I stuck to coffee.

But yeah, I didn't have a problem with any of it and eat a lot. It was all dryish and chew-worthy if you know what I mean. I was also a bit peckish when I got home.

We discussed metabolism a lot. Rhuta is painfully thin. She is DESPERATE to gain weight. I know people say it a lot, but I know her well and she eats loads. You would not think it was possible for someone to eat so much and stay the same weight.
this was a typical day:
Breakfast:
dhal and rice followed by a pint of full fat milk with mango pulp in
Snack:
Kellogs nutrigrain bar, home made full fat banana + fruit smoothie
Lunch: Last nights leftovers... some kind of curry and rice
snack: cakes/crisps or snacks brought by co-workers from tesco (little office ritual that a different person gets afternoon cakes/snacks every day)
Dinner: half a pizza and chips or massive curry and rice and naan or lasagna etc.
snacks: nuts and Channa mix with different things or an extra portion of the dinner.

How is it possible for this little 7 stone delicate flower to eat this much and not gain weight. She is always in awe of me because I eat less than half of that and GAIN weight. Ahh ha! Haaa haaa haaa. I mean WHAT????

She brought up the idea of sweat. I have no idea about this, but it was interesting. She said that people who sweat easily have a high metabolism. I don't know if that's true, but it is an interesting concept that I have not thought about before.

I NEVER sweat. I can exercise, ride a bike in full sun, do anything, and NEVER break a sweat. I never use deodorant because I just don't smell. My feet don't get sticky. My palms are dry as a bone and I am seemingly sweatgland-less. I have always considered this EXCELLENT! I don't get smelly ever and its just great! She said that she can feel cold, but her hands are clammy. A little hoovering makes her ringing wet. She says she hates it because she is always sweating. She always put it down to being in a hot country until she came to England... but it has continued. Her husband to be is the same. Even DH sweats loads. He plays badminton, comes home and its like he has showered in his clothes. Its really gross, but maybe she has something here... How many people who are overweight sweat easily? Or should I ask how many people who are overweight find they don't get damp pits that often unless they are really going for it in the exertion side of things?
I would appreciate your responses.

Selasa, 27 Januari 2009

Vitamin K2 and Cranial Development

One of the things Dr. Weston Price noticed about healthy traditional cultures worldwide is their characteristically broad faces, broad dental arches and wide nostrils. Due to the breadth of their dental arches, they invariably had straight teeth and enough room for wisdom teeth. As soon as these same groups adopted white flour and sugar, the next generation to be born grew up with narrow faces, narrow dental arches, crowded teeth, pinched nostrils and a characteristic underdevelopment of the middle third of the face.

Here's an excerpt from Nutrition and Physical Degeneration, about traditional and modernized Swiss groups. Keep in mind these are Europeans we're talking about (although he found the same thing in all the races he studied):
The reader will scarcely believe it possible that such marked differences in facial form, in the shape of the dental arches, and in the health condition of the teeth as are to be noted when passing from the highly modernized lower valleys and plains country in Switzerland to the isolated high valleys can exist. Fig. 3 shows four girls with typically broad dental arches and regular arrangement of the teeth. They have been born and raised in the Loetschental Valley or other isolated valleys of Switzerland which provide the excellent nutrition that we have been reviewing.

Another change that is seen in passing from the isolated groups with their more nearly normal facial developments, to the groups of the lower valleys, is the marked irregularity of the teeth with narrowing of the arches and other facial features... While in the isolated groups not a single case of a typical mouth breather was found, many were seen among the children of the lower-plains group. The children studied were from ten to sixteen years of age.
Price attributed this physical change to a lack of minerals and the fat-soluble vitamins necessary to make good use of them: vitamin A, vitamin D and what he called "activator X"-- now known to be vitamin K2 MK-4. The healthy cultures he studied all had an adequate source of vitamin K2, but many ate very little K1 (which comes mostly from vegetables). Inhabitants of the Loetschental valley ate green vegetables only in summer, due to the valley's harsh climate. The rest of the year, the diet was limited chiefly to whole grain sourdough rye bread and pastured dairy products.

The dietary transitions Price observed were typically from mineral- and vitamin-rich whole foods to refined modern foods, predominantly white flour and sugar. The villagers of the Loetschental valley obtained their fat-soluble vitamins from pastured dairy, which is particularly rich in vitamin K2 MK-4.

In a modern society like the U.S., most people exhibit signs of poor cranial development. How many people do you know with perfectly straight teeth who never required braces? How many people do you know whose wisdom teeth erupted normally?

The archaeological record shows that our hunter-gatherer ancestors generally didn't have crooked teeth. Humans evolved to have dental arches in proportion to their tooth size, like all animals. Take a look at these chompers. That skull is from an archaeological site in the Sahara desert that predates agriculture in the region. Those beautiful teeth are typical of paleolithic humans and modern hunter-gatherers. Crooked teeth and impacted wisdom teeth are only as old as agriculture. However, Price found that with care, certain traditional cultures were able to build well-formed skulls on an agricultural diet.

So was Price on to something, or was he just cherry picking individuals that supported his hypothesis? It turns out there's a developmental syndrome in the literature that might shed some light on this. It's called Binder's syndrome. Here's a description from a review paper about Binder's syndrome (emphasis mine):

The essential features of maxillo-nasal dysplasia were initially described by Noyes in 1939, although it was Binder who first defined it as a distinct clinical syndrome. He reported on three cases and recorded six specific characteristics:5

  • Arhinoid face.
  • Abnormal position of nasal bones.
  • Inter-maxillary hypoplasia with associated malocclusion.
  • Reduced or absent anterior nasal spine.
  • Atrophy of nasal mucosa.
  • Absence of frontal sinus (not obligatory).
Individuals with Binder's syndrome have a characteristic appearance that is easily recognizable.6 The mid-face profile is hypoplastic, the nose is flattened, the upper lip is convex with a broad philtrum, the nostrils are typically crescent or semi-lunar in shape due to the short collumela, and a deep fold or fossa occurs between the upper lip and the nose, resulting in an acute nasolabial angle.
Allow me to translate: in Binder's patients, the middle third of the face is underdeveloped, they have narrow dental arches and crowded teeth, small nostrils and abnormally small sinuses (sometimes resulting in mouth breathing). Sound familiar? So what causes Binder's syndrome? I'll give you a hint: it can be caused by prenatal exposure to warfarin (coumadin).

Warfarin is rat poison. It kills rats by causing them to lose their ability to form blood clots, resulting in massive hemmorhage. It does this by depleting vitamin K, which is necessary for the proper functioning of blood clotting factors. It's used (in small doses) in humans to thin the blood as a treatment for abnormal blood clots. As it turns out, Binder's syndrome can be caused by
a number of things that interfere with vitamin K metabolism. The sensitive period for humans is the first trimester. I think we're getting warmer...

Another name for Binder's syndrome is "warfarin embryopathy". There happens to be
a rat model of it. Dr. Bill Webster's group at the University of Sydney injected rats daily with warfarin for up to 12 weeks, beginning on the day they were born (rats have a different developmental timeline than humans). They also administered large doses of vitamin K1 along with it. This is to ensure the rats continue to clot normally, rather than hemorrhaging. Another notable property of warfarin that I've mentioned before is its ability to inhibit the conversion of vitamin K1 to vitamin K2 MK-4. Here's what they had to say about the rats:
The warfarin-treated rats developed a marked maxillonasal hypoplasia associated with a 11-13% reduction in the length of the nasal bones compared with controls... It is proposed that (1) the facial features of the human warfarin embryopathy are caused by reduced growth of the embryonic nasal septum, and (2) the septal growth retardation occurs because the warfarin-induced extrahepatic vitamin K deficiency prevents the normal formation of the vitamin K-dependent matrix gla protein in the embryo.
"Maxillonasal hypoplasia" means underdevelopment of the jaws and nasal region. Proper development of this region requires fully active matrix gla protein (MGP), which I've written about before in the context of vascular calcification. MGP requires vitamin K to activate it, and it seems to prefer K2 MK-4 to K1, at least in the vasculature. Administering K2 MK-4 along with warfarin prevents warfarin's ability to cause arterial calcification (thought to be an MGP-dependent mechanism), whereas administering K1 does not.

Here are a few quotes from a review paper by Dr. Webster's group. I have to post the whole abstract because it's a gem:
The normal vitamin K status of the human embryo appears to be close to deficiency [I would argue in most cases the embryo is actually deficient, as are most adults in industrial societies]. Maternal dietary deficiency or use of a number of therapeutic drugs during pregnancy, may result in frank vitamin K deficiency in the embryo. First trimester deficiency results in maxillonasal hypoplasia in the neonate with subsequent facial and orthodontic implications. A rat model of the vitamin K deficiency embryopathy shows that the facial dysmorphology is preceded by uncontrolled calcification in the normally uncalcified nasal septal cartilage, and decreased longitudinal growth of the cartilage, resulting in maxillonasal hypoplasia. The developing septal cartilage is normally rich in the vitamin K-dependent protein matrix gla protein (MGP). It is proposed that functional MGP is necessary to maintain growing cartilage in a non-calcified state. Developing teeth contain both MGP and a second vitamin K-dependent protein, bone gla protein (BGP). It has been postulated that these proteins have a functional role in tooth mineralization. As yet this function has not been established and abnormalities in tooth formation have not been observed under conditions where BGP and MGP should be formed in a non-functional form.
I think there's a good case to be made that most people in modern societies exhibit some degree of "Binder's syndrome" due to subclinical vitamin K2 deficiency during growth. I believe the evidence suggests that prenatal vitamin K2 MK-4 deficiency is behind narrow dental arches, crooked teeth, underdevelopment of the face and jaw, underdevelopment of the sinuses with mouth breathing in some cases, and poor tooth development resulting in a high susceptibility to dental cavities.

These symptoms are so common they are viewed as normal in industrial societies. There is no other single factor that so elegantly explains these characteristic changes in cranial form.
Rickets (vitamin D deficiency during growth) also causes cranial malformations, but they are distinct from those caused by K2 deficiency.

Humans do not efficiently convert K1 into K2 MK-4 (unlike rats), so we require a ready source of K2 in the diet. Our hunter-gatherer ancestors had a relatively high intake of K2 MK-4 from the organs of wild animals (particularly brain, pancreas, and marrow), insects and seafood. Our food supply today is depleted of K2, due to our avoidance of organ meats and poor animal husbandry practices. K2 MK-4 is found only in animal products. Pastured dairy is the most convenient source of K2 MK-4 in the modern diet, just as it was for the villagers of the Loetschental valley when Dr. Price visited them. Dairy from grain-fed cows contains much less K2.


Price felt that to ensure the proper development of their children, mothers should eat a diet rich in fat-soluble vitamins both before and during pregnancy. This makes sense in light of what we now know. There is a pool of vitamin K2 MK-4 in the organs that turns over very slowly, in addition to a pool in the blood that turns over rapidly. Entering pregnancy with a full store means a greater chance of having enough of the vitamin for the growing fetus. Healthy traditional cultures often fed special foods rich in fat-soluble vitamins to women of childbearing age and expectant mothers, thus ensuring beautiful and robust progeny.


Vitamin K2 and Cranial Development

One of the things Dr. Weston Price noticed about healthy traditional cultures worldwide is their characteristically broad faces, broad dental arches and wide nostrils. Due to the breadth of their dental arches, they invariably had straight teeth and enough room for wisdom teeth. As soon as these same groups adopted white flour and sugar, the next generation to be born grew up with narrow faces, narrow dental arches, crowded teeth, pinched nostrils and a characteristic underdevelopment of the middle third of the face.

Here's an excerpt from Nutrition and Physical Degeneration, about traditional and modernized Swiss groups. Keep in mind these are Europeans we're talking about (although he found the same thing in all the races he studied):
The reader will scarcely believe it possible that such marked differences in facial form, in the shape of the dental arches, and in the health condition of the teeth as are to be noted when passing from the highly modernized lower valleys and plains country in Switzerland to the isolated high valleys can exist. Fig. 3 shows four girls with typically broad dental arches and regular arrangement of the teeth. They have been born and raised in the Loetschental Valley or other isolated valleys of Switzerland which provide the excellent nutrition that we have been reviewing.

Another change that is seen in passing from the isolated groups with their more nearly normal facial developments, to the groups of the lower valleys, is the marked irregularity of the teeth with narrowing of the arches and other facial features... While in the isolated groups not a single case of a typical mouth breather was found, many were seen among the children of the lower-plains group. The children studied were from ten to sixteen years of age.
Price attributed this physical change to a lack of minerals and the fat-soluble vitamins necessary to make good use of them: vitamin A, vitamin D and what he called "activator X"-- now known to be vitamin K2 MK-4. The healthy cultures he studied all had an adequate source of vitamin K2, but many ate very little K1 (which comes mostly from vegetables). Inhabitants of the Loetschental valley ate green vegetables only in summer, due to the valley's harsh climate. The rest of the year, the diet was limited chiefly to whole grain sourdough rye bread and pastured dairy products.

The dietary transitions Price observed were typically from mineral- and vitamin-rich whole foods to refined modern foods, predominantly white flour and sugar. The villagers of the Loetschental valley obtained their fat-soluble vitamins from pastured dairy, which is particularly rich in vitamin K2 MK-4.

In a modern society like the U.S., most people exhibit signs of poor cranial development. How many people do you know with perfectly straight teeth who never required braces? How many people do you know whose wisdom teeth erupted normally?

The archaeological record shows that our hunter-gatherer ancestors generally didn't have crooked teeth. Humans evolved to have dental arches in proportion to their tooth size, like all animals. Take a look at these chompers. That skull is from an archaeological site in the Sahara desert that predates agriculture in the region. Those beautiful teeth are typical of paleolithic humans and modern hunter-gatherers. Crooked teeth and impacted wisdom teeth are only as old as agriculture. However, Price found that with care, certain traditional cultures were able to build well-formed skulls on an agricultural diet.

So was Price on to something, or was he just cherry picking individuals that supported his hypothesis? It turns out there's a developmental syndrome in the literature that might shed some light on this. It's called Binder's syndrome. Here's a description from a review paper about Binder's syndrome (emphasis mine):

The essential features of maxillo-nasal dysplasia were initially described by Noyes in 1939, although it was Binder who first defined it as a distinct clinical syndrome. He reported on three cases and recorded six specific characteristics:5

  • Arhinoid face.
  • Abnormal position of nasal bones.
  • Inter-maxillary hypoplasia with associated malocclusion.
  • Reduced or absent anterior nasal spine.
  • Atrophy of nasal mucosa.
  • Absence of frontal sinus (not obligatory).
Individuals with Binder's syndrome have a characteristic appearance that is easily recognizable.6 The mid-face profile is hypoplastic, the nose is flattened, the upper lip is convex with a broad philtrum, the nostrils are typically crescent or semi-lunar in shape due to the short collumela, and a deep fold or fossa occurs between the upper lip and the nose, resulting in an acute nasolabial angle.
Allow me to translate: in Binder's patients, the middle third of the face is underdeveloped, they have narrow dental arches and crowded teeth, small nostrils and abnormally small sinuses (sometimes resulting in mouth breathing). Sound familiar? So what causes Binder's syndrome? I'll give you a hint: it can be caused by prenatal exposure to warfarin (coumadin).

Warfarin is rat poison. It kills rats by causing them to lose their ability to form blood clots, resulting in massive hemmorhage. It does this by depleting vitamin K, which is necessary for the proper functioning of blood clotting factors. It's used (in small doses) in humans to thin the blood as a treatment for abnormal blood clots. As it turns out, Binder's syndrome can be caused by
a number of things that interfere with vitamin K metabolism. The sensitive period for humans is the first trimester. I think we're getting warmer...

Another name for Binder's syndrome is "warfarin embryopathy". There happens to be
a rat model of it. Dr. Bill Webster's group at the University of Sydney injected rats daily with warfarin for up to 12 weeks, beginning on the day they were born (rats have a different developmental timeline than humans). They also administered large doses of vitamin K1 along with it. This is to ensure the rats continue to clot normally, rather than hemorrhaging. Another notable property of warfarin that I've mentioned before is its ability to inhibit the conversion of vitamin K1 to vitamin K2 MK-4. Here's what they had to say about the rats:
The warfarin-treated rats developed a marked maxillonasal hypoplasia associated with a 11-13% reduction in the length of the nasal bones compared with controls... It is proposed that (1) the facial features of the human warfarin embryopathy are caused by reduced growth of the embryonic nasal septum, and (2) the septal growth retardation occurs because the warfarin-induced extrahepatic vitamin K deficiency prevents the normal formation of the vitamin K-dependent matrix gla protein in the embryo.
"Maxillonasal hypoplasia" means underdevelopment of the jaws and nasal region. Proper development of this region requires fully active matrix gla protein (MGP), which I've written about before in the context of vascular calcification. MGP requires vitamin K to activate it, and it seems to prefer K2 MK-4 to K1, at least in the vasculature. Administering K2 MK-4 along with warfarin prevents warfarin's ability to cause arterial calcification (thought to be an MGP-dependent mechanism), whereas administering K1 does not.

Here are a few quotes from a review paper by Dr. Webster's group. I have to post the whole abstract because it's a gem:
The normal vitamin K status of the human embryo appears to be close to deficiency [I would argue in most cases the embryo is actually deficient, as are most adults in industrial societies]. Maternal dietary deficiency or use of a number of therapeutic drugs during pregnancy, may result in frank vitamin K deficiency in the embryo. First trimester deficiency results in maxillonasal hypoplasia in the neonate with subsequent facial and orthodontic implications. A rat model of the vitamin K deficiency embryopathy shows that the facial dysmorphology is preceded by uncontrolled calcification in the normally uncalcified nasal septal cartilage, and decreased longitudinal growth of the cartilage, resulting in maxillonasal hypoplasia. The developing septal cartilage is normally rich in the vitamin K-dependent protein matrix gla protein (MGP). It is proposed that functional MGP is necessary to maintain growing cartilage in a non-calcified state. Developing teeth contain both MGP and a second vitamin K-dependent protein, bone gla protein (BGP). It has been postulated that these proteins have a functional role in tooth mineralization. As yet this function has not been established and abnormalities in tooth formation have not been observed under conditions where BGP and MGP should be formed in a non-functional form.
I think there's a good case to be made that most people in modern societies exhibit some degree of "Binder's syndrome" due to subclinical vitamin K2 deficiency during growth. I believe the evidence suggests that prenatal vitamin K2 MK-4 deficiency is behind narrow dental arches, crooked teeth, underdevelopment of the face and jaw, underdevelopment of the sinuses with mouth breathing in some cases, and poor tooth development resulting in a high susceptibility to dental cavities.

These symptoms are so common they are viewed as normal in industrial societies. There is no other single factor that so elegantly explains these characteristic changes in cranial form.
Rickets (vitamin D deficiency during growth) also causes cranial malformations, but they are distinct from those caused by K2 deficiency.

Humans do not efficiently convert K1 into K2 MK-4 (unlike rats), so we require a ready source of K2 in the diet. Our hunter-gatherer ancestors had a relatively high intake of K2 MK-4 from the organs of wild animals (particularly brain, pancreas, and marrow), insects and seafood. Our food supply today is depleted of K2, due to our avoidance of organ meats and poor animal husbandry practices. K2 MK-4 is found only in animal products. Pastured dairy is the most convenient source of K2 MK-4 in the modern diet, just as it was for the villagers of the Loetschental valley when Dr. Price visited them. Dairy from grain-fed cows contains much less K2.


Price felt that to ensure the proper development of their children, mothers should eat a diet rich in fat-soluble vitamins both before and during pregnancy. This makes sense in light of what we now know. There is a pool of vitamin K2 MK-4 in the organs that turns over very slowly, in addition to a pool in the blood that turns over rapidly. Entering pregnancy with a full store means a greater chance of having enough of the vitamin for the growing fetus. Healthy traditional cultures often fed special foods rich in fat-soluble vitamins to women of childbearing age and expectant mothers, thus ensuring beautiful and robust progeny.


Sausage-Pumpkin Soup

Hello Neighbors!I'm new to the YouTube scene, but let me just say I was tickled pink to find this video from one of our 5 Day Pouch Test Neighbors who has her young son testing the highly acclaimed Pumpkin-Sausage soup. Take a look:Thanks for sharing, Tracy. You made my day and I hope your little guy continues to enjoy many of our LivingAfterWLS Recipes. (The recipes - they are family friendly,

Senin, 26 Januari 2009

Get Geared Up For Success in 2009

Hello Neighbors and Happy Monday!This is last week of January - Have you found your New Year's Resolutions dimming already? I know I need a little boost of encouragement today so I found this article by Cookie Tuminello (pictured below), a Personal Power Mentor at Success Source. In a fundamentally basic way she provides us eight can-do strategies for finding success in 2009. Some of them are

Minggu, 25 Januari 2009

The Tokelau Island Migrant Study: The Final Word

Over the course of the last month, I've outlined some of the major findings of the Tokelau Island Migrant study. It's one of the most comprehensive studies I've found of a traditional culture transitioning to a modern diet and lifestyle. It traces the health of the inhabitants of the Pacific island Tokelau over time, as well as the health of Tokelauan migrants to New Zealand.

Unfortunately, the study began after the introduction of modern foods. We will never know for sure what Tokelauan health was like when their diet was completely traditional. To get some idea, we have to look at other traditional Pacific islanders such as the Kitavans.

What we can say is that an increase in the consumption of modern foods on Tokelau, chiefly white wheat flour and refined sugar, correlated with an increase in several non-communicable disorders, including overweight, diabetes and severe tooth decay. Further modernization as Tokelauans migrated to New Zealand corresponded with an increase in nearly every disorder measured, including heart disease, weight gain, diabetes, asthma and gout. These are all "diseases of civilization", which are not observed in hunter-gatherers and certain non-industrial populations throughout the world.

One of the most interesting things about Tokelauans is their extreme saturated fat intake, 40- 50% of calories. That's more than any other population I'm aware of. Yet Tokelauans appear to have a low incidence of heart attacks, lower than their New Zealand- dwelling relatives who eat half as much saturated fat. This should not be buried in the scientific literature; it should be common knowledge.

Overall, I believe the Tokelau Island Migrant study (among others) shows us that partially replacing nourishing traditional foods with modern foods such as processed wheat and sugar, is enough to cause a broad range of disorders not seen in hunter-gatherers but typical of modern societies. Changes in vitamin D status between Tokelau and New Zealand may have also played a role, due to the more indoor lifestyle of migrants.

The Tokelau Island Migrant Study: Background and Overview
The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain
The Tokelau Island Migrant Study: Diabetes
The Tokelau Island Migrant Study: Asthma

The Tokelau Island Migrant Study: The Final Word

Over the course of the last month, I've outlined some of the major findings of the Tokelau Island Migrant study. It's one of the most comprehensive studies I've found of a traditional culture transitioning to a modern diet and lifestyle. It traces the health of the inhabitants of the Pacific island Tokelau over time, as well as the health of Tokelauan migrants to New Zealand.

Unfortunately, the study began after the introduction of modern foods. We will never know for sure what Tokelauan health was like when their diet was completely traditional. To get some idea, we have to look at other traditional Pacific islanders such as the Kitavans.

What we can say is that an increase in the consumption of modern foods on Tokelau, chiefly white wheat flour and refined sugar, correlated with an increase in several non-communicable disorders, including overweight, diabetes and severe tooth decay. Further modernization as Tokelauans migrated to New Zealand corresponded with an increase in nearly every disorder measured, including heart disease, weight gain, diabetes, asthma and gout. These are all "diseases of civilization", which are not observed in hunter-gatherers and certain non-industrial populations throughout the world.

One of the most interesting things about Tokelauans is their extreme saturated fat intake, 40- 50% of calories. That's more than any other population I'm aware of. Yet Tokelauans appear to have a low incidence of heart attacks, lower than their New Zealand- dwelling relatives who eat half as much saturated fat. This should not be buried in the scientific literature; it should be common knowledge.

Overall, I believe the Tokelau Island Migrant study (among others) shows us that partially replacing nourishing traditional foods with modern foods such as processed wheat and sugar, is enough to cause a broad range of disorders not seen in hunter-gatherers but typical of modern societies. Changes in vitamin D status between Tokelau and New Zealand may have also played a role, due to the more indoor lifestyle of migrants.

The Tokelau Island Migrant Study: Background and Overview
The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain
The Tokelau Island Migrant Study: Diabetes
The Tokelau Island Migrant Study: Asthma

Correction: Tomato-Chickpea Soup

Correction: This recipe was published in our 5 Day Pouch Test Bulletin on January 23. Please note that 1 (14.5-ounce) can of tomatoes was omitted from the recipe published in the Bulletin. Below is the corrected recipe. Sorry about that, Neighbors. Enjoy your soup!Tomato-Chickpea Soup Comfort Food for Days 1 & 2 (5 Day Pouch Test)Tomato Chickpea Soup with Sour Cream One question I answer often is

Sabtu, 24 Januari 2009

The Tokelau Island Migrant Study: Gout

Gout is a disorder in which uric acid crystals form in the joints, causing intense pain. The body forms uric acid as a by-product of purine metabolism. Purines are a building block of DNA, among other things. Uric acid is normally excreted into the urine, hence the name.

On Tokelau between 1971 and 1982, gout prevalence fell slightly. In migrants to New Zealand, gout prevalence began at the same level as on Tokelau but increased rapidly over the same time period. Here are the prevalence data for men, from Migration and Health in a Small Society: the Case of Tokelau (I don't have data for women):

This paper found that the age-standardized risk of developing gout was 9 times higher in New Zealand than on Tokelau for men, and 2.7 times higher for women.

Gout is usually treated by taking drugs and avoiding purine-rich foods. According to Wikipedia's entry on purines, these include:
sweetbreads [calf thymus or pancreas], anchovies, sardines, liver, beef kidneys, brains, meat extracts (e.g Oxo, Bovril), herring, mackerel, scallops, game meats, and gravy. A moderate amount of purine is also contained in beef, pork, poultry, fish and seafood, asparagus, cauliflower, spinach, mushrooms, green peas, lentils, dried peas, beans, oatmeal, wheat bran and wheat germ.
Those include some of the most nutritious foods available! The idea that the human body would not have evolved to tolerate most of the foods listed above is beyond comprehension, given our species' carnivorous tendencies. As a matter of fact, the only controlled trial I found suggests that a diet high in purines from animal protein has no effect on the uric acid concentration in the blood, because the body simply excretes any excess. In any case, like cholesterol, the majority of purines in the body are synthesized on-site, rather than coming from the diet. The only thing I found in support of the purine-gout hypothesis was a prospective study from 2004 that found an association between dietary purines and gout. I think we need to consider other possibilities.

Is there anything else that elevates uric acid in humans? Ah, sugar, one of my favorite punching bags. You never let me down, old friend. Refined sugar (sucrose) increases serum uric acid under controlled conditions, as does fructose when compared to starch. This has never been demonstrated for purine-rich foods that I could find.

Another clue comes from a disorder called "hereditary fructose intolerance". These patients are missing an enzyme required for metabolizing fructose, and must avoid it or risk becoming very ill. Some of the relatives of these patients are "heterozygous" for the mutation, meaning they have one mutated copy of the gene and one normal copy. They can metabolize fructose, but at a slower rate than someone with two functional copies. And they also have a very high incidence of gout.

Tokelauan migrants to New Zealand consumed significantly more sugar than Tokelauans on Tokelau during this study period (13 vs. 8 percent of calories in 1982). This explanation makes much more sense to me than the idea that gout is caused by the very foods that have sustained us as long as our species has existed.

There is one piece that doesn't fit, however. If sugar is causing gout, then why didn't gout incidence increase on Tokelau as their sugar consumption increased? I don't know. Perhaps there is another factor involved as well. Any thoughts?

The Tokelau Island Migrant Study: Background and Overview
The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain
The Tokelau Island Migrant Study: Diabetes
The Tokelau Island Migrant Study: Asthma

The Tokelau Island Migrant Study: Gout

Gout is a disorder in which uric acid crystals form in the joints, causing intense pain. The body forms uric acid as a by-product of purine metabolism. Purines are a building block of DNA, among other things. Uric acid is normally excreted into the urine, hence the name.

On Tokelau between 1971 and 1982, gout prevalence fell slightly. In migrants to New Zealand, gout prevalence began at the same level as on Tokelau but increased rapidly over the same time period. Here are the prevalence data for men, from Migration and Health in a Small Society: the Case of Tokelau (I don't have data for women):

This paper found that the age-standardized risk of developing gout was 9 times higher in New Zealand than on Tokelau for men, and 2.7 times higher for women.

Gout is usually treated by taking drugs and avoiding purine-rich foods. According to Wikipedia's entry on purines, these include:
sweetbreads [calf thymus or pancreas], anchovies, sardines, liver, beef kidneys, brains, meat extracts (e.g Oxo, Bovril), herring, mackerel, scallops, game meats, and gravy. A moderate amount of purine is also contained in beef, pork, poultry, fish and seafood, asparagus, cauliflower, spinach, mushrooms, green peas, lentils, dried peas, beans, oatmeal, wheat bran and wheat germ.
Those include some of the most nutritious foods available! The idea that the human body would not have evolved to tolerate most of the foods listed above is beyond comprehension, given our species' carnivorous tendencies. As a matter of fact, the only controlled trial I found suggests that a diet high in purines from animal protein has no effect on the uric acid concentration in the blood, because the body simply excretes any excess. In any case, like cholesterol, the majority of purines in the body are synthesized on-site, rather than coming from the diet. The only thing I found in support of the purine-gout hypothesis was a prospective study from 2004 that found an association between dietary purines and gout. I think we need to consider other possibilities.

Is there anything else that elevates uric acid in humans? Ah, sugar, one of my favorite punching bags. You never let me down, old friend. Refined sugar (sucrose) increases serum uric acid under controlled conditions, as does fructose when compared to starch. This has never been demonstrated for purine-rich foods that I could find.

Another clue comes from a disorder called "hereditary fructose intolerance". These patients are missing an enzyme required for metabolizing fructose, and must avoid it or risk becoming very ill. Some of the relatives of these patients are "heterozygous" for the mutation, meaning they have one mutated copy of the gene and one normal copy. They can metabolize fructose, but at a slower rate than someone with two functional copies. And they also have a very high incidence of gout.

Tokelauan migrants to New Zealand consumed significantly more sugar than Tokelauans on Tokelau during this study period (13 vs. 8 percent of calories in 1982). This explanation makes much more sense to me than the idea that gout is caused by the very foods that have sustained us as long as our species has existed.

There is one piece that doesn't fit, however. If sugar is causing gout, then why didn't gout incidence increase on Tokelau as their sugar consumption increased? I don't know. Perhaps there is another factor involved as well. Any thoughts?

The Tokelau Island Migrant Study: Background and Overview
The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain
The Tokelau Island Migrant Study: Diabetes
The Tokelau Island Migrant Study: Asthma

Jumat, 23 Januari 2009

Fish Tacos

Today in the 5 Day Pouch Test Bulletin we talked about what makes a great "Day 6" recipe. Here's what we concluded:A main dish should optimally be 20 grams of protein or greater. Keep in mind on average 1-ounce of animal protein (meat, poultry, fish, shellfish) has roughly 7 grams of protein so you will want to eat at least one 3-ounce serving of animal protein to get 20+ grams in a meal. One egg

Kamis, 22 Januari 2009

Take Time to Stretch the Body

Today is a bit cold and glum here in Wyoming and I did not particularly want to get out of bed this morning and get going with the routine of the day. So lazily I stayed in bed and watched with fascination the ritual of KeepHerKitty (my beloved calico cat) as she prepared herself for the day - be it rain or shine.Leisurely she rose and made her body long and lithe in a slow luxuirous stretch.

Are You Worth $24.95? 5DPT Owner's Manual

I have been asked by a few (very few) people if the 5 Day Pouch Test Owner's Manual is worth the $24.95 price. That is a touchy question for me as I am the author of the book and my company, LivingAfterWLS, LLC published the book (i.e.; paid the bill for publication). This was an extremely costly project for me and my company and certainly not a get-rich-overnight project. Not by any means. But

Kaye's Top 5 "Day 6" Recipes

(For the Beef Osso Buco alla Milanese recipe shown at left go here: Osso Buco alla Milanese)We are often asked, "OK, now the 5 Day Pouch Test is complete, what do I eat so that I can stay on track?"Great question. Because if we stay on track we don't need to do the 5DPT again and we are in control of our cravings, our fork and our LivingAfterWLS. Here are my Top Five Day 6 recipe picks taken

Still pain, plus some extra for good measure

couple of things are annoying me... the fill doesn't seem to have made much, if any, difference. I haven't had an episode of HMSing or even pb'ing or heartburn or stuff like that. However, I have been good, and chewed well. I can however, eat meat, potatos, rice and bread without incident. Hmmm

Meals I can remember:
Kentucky snack box - Chips and fillet chicken
Bread and jam
Baked beans on toast
Breaded chicken goujons, potato waffle and sweetcorn (always a hard item to eat)
Roast lamb dinner
Spanish tortilla - potato, onion and egg
Scrambled egg with bacon and tomato
Sandwich
Fish and chips

I have made an appointment to go back and see Wendy as suggested but I think I am going to do something a little more drastic and go on slimfast or something. I am at that very dangerous point of just saying "Stuff it all" and enjoying my life. I did this because I wanted to regain control and I want to, but I am thinking about food all the time, eating it, cooking it and obsessing about it, and also thinking about my band all the time and I just cant be bothered any more.

Also, the governments minions are annoying me royally. They have launched an investigation into home education as a cover for child abuse or enslavement/entrapment:

"The DCSF spokeswoman said the concerns were based on unspecified allegations. "We want to see if there is any evidence to back up the allegations," she said."

I'm left wondering how exactly this is different from "we know they are guilty so now we just need to find the evidence"

Are there not more serious problems in the world? Are there not more serious problems in the UK, are there not more pressing concerns within England, or even our county that would be better for these idiots to sort out rather than persecute a group of people that in the vast majority are doing this because the systems they want to impose on us have failed our babies?

I would suggest an inquest into why more and more people are telling schools in England to SHOVE it. an investigation into why the LEA themselves do not act where there is medical evidence of bullying of 4 and 5 year old children within their 'care'

If I were the DCSF I would be more worried that Education Otherwise, HEAS and all the others groups don't club together and launch an investigation into the LEA and publish it nationwide on radio shows and television and give words into other peoples mouths.

They could find that the majority of schools would then be moribund after the bullying and suicides and stress levels, lack of learning and wasted time are revealed in all their glory.

So this has really annoyed me. I suggest you read up on the following before you voice your opinion... as so many people don't know what the hell they are talking about and just spout their personal opinion and look like idiots on the radio and TV to all of us that are a little more enlightened.

If the school system had nurtured, educated and supported my DS as it told me it was going to do, he would still be there. I have no intention of putting him back into that prison, and I have the right to choose this option. I just hope that others will have this option in the future.

To quote Jason Ward:

"Please, can we not give up the liberty of being able to choose between a great
state system, a private school or the joy of teaching at home, simply
because it is hypothetically possible that a bad person, somewhere, might
one day conceivably manipulate the system, or there might be an “extreme
case”.
AHEd press release on Home Education Forums:
http://www.home-education.biz/forum/news-releases/61-outrage-disgust-latest-government-attack-families.html#post107

Education Professionals Union Voice General Secretary believes that inspections by the local education authority should be compulsory, and parents should have to present the child and his or her work.
http://www.voicetheunion.org.uk/index.cfm/page/_sections.contentdetail.cfm/navid/11/parentid/325/id/1391/_sa/17

Government attempting to influence consultation outcome:
These completely biased articles have been posted to inhouse journals. Please remember that the NSPCC spokesperson said on the Jeremy Vine show that they have no evidence or statistics to back up these spurious abuse concerns. This is not the impression being given to state sponsored employees who are clearly being encouraged to respond to this consultation. It's about numbers more than ever.
http://www.publicservice.co.uk/news_story.asp?id=8280
http://www.egovmonitor.com/node/23078
See here for detailed information about how local authorities have may used"unsubstantiated hearsay" in consultation responses:
http://ahed.pbwiki.com/London+Safeguarding+Network
contact your local newspaper:
http://news.mysociety.org/
email your mp:
http://www.theyworkforyou.com/
This is the link to 'listen again' for the Jeremy Vine show that broached the topic
"some people have expressed concern that home education could be used as a cover for child abuse, forced marriage, domestic servitude or other forms of child neglect. What do you think Government should do to ensure this does not happen?"

http://www.bbc.co.uk/iplayer/episode/b00grcyg/Jeremy_Vine_20_01_2009/

the final question on the consultation form. Heres the link to the consultation:-http://www.dcsf.gov.uk/consultations/index.cfm?action=consultationDetails&consultationId=1605&external=no&menu=1

Rabu, 21 Januari 2009

The Tokelau Island Migrant Study: Asthma

Asthma is another disease of civilization. Between 1980 and 2001, its prevalence more than doubled in American children 17 years and younger. The trend is showing no sign of slowing down (CDC NHANES surveys).



The age-standardized asthma prevalence in Tokelauan migrants to New Zealand age 15 and older, was 2 - 6 times higher than in non-migrants from 1976 to 1982, depending on gender and year. The highest prevalence was in New Zealand migrant women in 1976, at 6.8%. The lowest was in Tokelauan men in 1976 at 1.1%.

A skeptic might suggest it's because these adults grew up around certain types of pollen or other antigens, and were exposed to new ones later in life. However, even migrant children in the 0-4 age group, who were most likely born in NZ, had more asthma than on Tokelau.

What could contribute to the increased asthma prevalence upon modernization? I'm not particularly knowledgeable about the mechanisms of asthma, but it seems likely to involve a chronic over-activation of the immune system ("inflammation"). In the case of Tokelauans, this could result from wheat gluten, an excessive sugar intake, and/or insufficient vitamin D. All three are potential culprits in my opinion. Stress may also play a role.

Anecdotally, many people report freedom from asthma and allergies after adopting a "paleolithic"-style or low-carbohydrate diet. I feel that's consistent with the effects of a good diet on inflammation. If you reduce or eliminate the chief offenders-- wheat, sugar, industrial vegetable oil and other processed food-- you will most likely reduce your level of chronic inflammation, which seems to be tied to many modern disorders.

The Tokelau Island Migrant Study: Background and Overview
The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain
The Tokelau Island Migrant Study: Diabetes

The Tokelau Island Migrant Study data in this post come from the book Migration and Health in a Small Society: The Case of Tokelau.

Thanks to the EPA and Wikipedia for the graph image (public domain).

The Tokelau Island Migrant Study: Asthma

Asthma is another disease of civilization. Between 1980 and 2001, its prevalence more than doubled in American children 17 years and younger. The trend is showing no sign of slowing down (CDC NHANES surveys).



The age-standardized asthma prevalence in Tokelauan migrants to New Zealand age 15 and older, was 2 - 6 times higher than in non-migrants from 1976 to 1982, depending on gender and year. The highest prevalence was in New Zealand migrant women in 1976, at 6.8%. The lowest was in Tokelauan men in 1976 at 1.1%.

A skeptic might suggest it's because these adults grew up around certain types of pollen or other antigens, and were exposed to new ones later in life. However, even migrant children in the 0-4 age group, who were most likely born in NZ, had more asthma than on Tokelau.

What could contribute to the increased asthma prevalence upon modernization? I'm not particularly knowledgeable about the mechanisms of asthma, but it seems likely to involve a chronic over-activation of the immune system ("inflammation"). In the case of Tokelauans, this could result from wheat gluten, an excessive sugar intake, and/or insufficient vitamin D. All three are potential culprits in my opinion. Stress may also play a role.

Anecdotally, many people report freedom from asthma and allergies after adopting a "paleolithic"-style or low-carbohydrate diet. I feel that's consistent with the effects of a good diet on inflammation. If you reduce or eliminate the chief offenders-- wheat, sugar, industrial vegetable oil and other processed food-- you will most likely reduce your level of chronic inflammation, which seems to be tied to many modern disorders.

The Tokelau Island Migrant Study: Background and Overview
The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain
The Tokelau Island Migrant Study: Diabetes

The Tokelau Island Migrant Study data in this post come from the book Migration and Health in a Small Society: The Case of Tokelau.

Thanks to the EPA and Wikipedia for the graph image (public domain).

Senin, 19 Januari 2009

The Tokelau Island Migrant Study: Diabetes

This post will be short and sweet. Diabetes is a disease of civilization. As Tokelauans adopted Western industrial foods, their diabetes prevalence increased. At any given time point, age-standardized diabetes prevalence was higher in migrants to New Zealand than those who remained on Tokelau:


This is not a difference in diagnosis. Tokelauans were examined for diabetes by the same group of physicians, using the same criteria. It's also not a difference in average age, sice the numbers are age-standardized. On Tokelau, diabetes prevalence doubled in a decade. Migrants to New Zealand in 1981 had roughly three times the prevalence of diabetes that Tokelauans did in 1971. I can only imagine the prevalence is even higher in 2008.

We don't know what the prevalence was in Tokelauans when their diet was completely traditional, but I would expect it to be low like other traditional Pacific island societies. I'm looking at a table right now of age-standardized diabetes prevalence on 11 different Pacific islands. There is quite a bit of variation, but the pattern is clear: the more modernized, the higher the diabetes rate. In several cases, the table has placed two values side-by-side: one value for rural inhabitants of an island, and another for urban inhabitants of the same island. In every case, the prevalence of diabetes is higher in the urban group. In some cases, the difference is as large as four-fold.

The lowest value goes to the New Caledonians of Touho, who are also considered the least modernized on the table (although even their diet is not completely traditional). Men have an age-standardized diabetes prevalence of 1.8%, women 1.4%. At the other extreme are the Micronesians of Nauru, affluent due to phosphate resources, who have a prevalence of 33.4% for men and 32.1% for women. They subsist mostly on imported food and are extremely obese.

The same patterns can be seen in Africa, the Arctic and probably everywhere that has adopted processed Western foods. White rice alone (compared with the combination of wheat flour and sugar) does not seem to have this effect.

The data in this post are from the book Migration and Health in a Small Society: the Case of Tokelau.

The Tokelau Island Migrant Study: Background and Overview

The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain

The Tokelau Island Migrant Study: Diabetes

This post will be short and sweet. Diabetes is a disease of civilization. As Tokelauans adopted Western industrial foods, their diabetes prevalence increased. At any given time point, age-standardized diabetes prevalence was higher in migrants to New Zealand than those who remained on Tokelau:


This is not a difference in diagnosis. Tokelauans were examined for diabetes by the same group of physicians, using the same criteria. It's also not a difference in average age, sice the numbers are age-standardized. On Tokelau, diabetes prevalence doubled in a decade. Migrants to New Zealand in 1981 had roughly three times the prevalence of diabetes that Tokelauans did in 1971. I can only imagine the prevalence is even higher in 2008.

We don't know what the prevalence was in Tokelauans when their diet was completely traditional, but I would expect it to be low like other traditional Pacific island societies. I'm looking at a table right now of age-standardized diabetes prevalence on 11 different Pacific islands. There is quite a bit of variation, but the pattern is clear: the more modernized, the higher the diabetes rate. In several cases, the table has placed two values side-by-side: one value for rural inhabitants of an island, and another for urban inhabitants of the same island. In every case, the prevalence of diabetes is higher in the urban group. In some cases, the difference is as large as four-fold.

The lowest value goes to the New Caledonians of Touho, who are also considered the least modernized on the table (although even their diet is not completely traditional). Men have an age-standardized diabetes prevalence of 1.8%, women 1.4%. At the other extreme are the Micronesians of Nauru, affluent due to phosphate resources, who have a prevalence of 33.4% for men and 32.1% for women. They subsist mostly on imported food and are extremely obese.

The same patterns can be seen in Africa, the Arctic and probably everywhere that has adopted processed Western foods. White rice alone (compared with the combination of wheat flour and sugar) does not seem to have this effect.

The data in this post are from the book Migration and Health in a Small Society: the Case of Tokelau.

The Tokelau Island Migrant Study: Background and Overview

The Tokelau Island Migrant Study: Dental Health
The Tokelau Island Migrant Study: Cholesterol and Cardiovascular Health
The Tokelau Island Migrant Study: Weight Gain

Pain pain pain...

I had my fill yesterday, which went well. There was some evaporative loss, and Wendy re adjusted the volume in my band calculation to 6.5mls. There were no air bubbles, the fluid was clear and everything was otherwise fine, so nothing to worry about. She gave me another 0.5mls on top of the amount taking me to 7mls total.

I want this to be the one that starts me on that slope again. It does seem that because of being too tight back in August, it was due to swelling and aggravation rather than actually being filled too tight as I was only at 5.5mls or something. Anyway, 7mls is a normal amount for a bandit, and seeings as I was losing and regaining the same couple of pounds over the last 3 months, this one should tip that balance the other way. I hope so.

its half 11 in the morning and I have had my berocca and a yoghurt and I am not hungry. I am not saying that this is a difference, because I am never usually hungry in the mornings, but I am just logging it for my own knowledge in the future.

I do seem to be someone who suffers from painful fills. It feels like I have been stabbed and I have to be all precious and hold my port site carefully whilst walking about. I hope that it doesn't last too long this time, but its usually a couple of days whatever. At least I know that there is nothing wrong.

Because of the crap that happened with my band, there is always this niggling paranoia that its not working, or its broken. I just cant get that trust back no matter that its been a year since it was all fixed up.

I have also thought of a different way to view my weightloss expedition. Rather than thinking about it since banding, I should really be thinking about it since starting this expedition back in 2005 when I weighed 18 stone 12 and a half pounds. When I think about that, it makes me feel a lot better. The time frame is not a factor to me, its the actually pounds lost that makes me feel good. Because I have only lost about 14 pounds with the band, it makes me feel a bit crap, but I have actually lost 30 or so since I started this. Considering I want to be about 12 stone, this means I am about a 3rd of the way there, and this puts a hell of a lot more positive spin on things. The mind is a powerful tool isn't it.